- Строительные калькуляторы — ProstoBuild.ru
- Расчет навеса
- Расчёт и изготовление металлической фермы для навеса
- Общая методология расчёта
- Определение сочетанных воздействий и реакции опоры
- Дифференциальный расчёт усилий
- Определение сечения элементов
- Изготовление деталей для фермы
- Сборка на метизах или сваривание?
Строительные калькуляторы — ProstoBuild.ru
Расчет навеса
Здравствуйте, уважаемые читатели! В данной статье я решил использовать уже опубликованную ранее информацию и онлайн расчеты для расчета навеса из металлоконструкций.
Навес можно использовать для различных целей, но пусть это будет навес для автомобиля.
Итак, основная наша задача – это определиться в размере сечения наших несущих конструкций. На каждую конструкцию мы будем собирать нагрузки, и рассчитывать отдельно. Расчет будем вести сверху вниз, т.е. сразу прогоны, потом балки и стойки. Это делается для того, чтобы при расчете стоек мы уже знали вес вышележащих конструкций (балки и прогоны).
Прогон будем рассчитывать на прочность и прогиб
Для расчета прогонов нам надо будет знать линейную равномерно распределенную нагрузку на него и расчетную схему.
Прогон будет привариваться в месте укладки к балке, значит, это будет шарнирное соединение и расчетная схема соответственно «шарнир-шарнир».
На прогон будут действовать нагрузки от веса профлиста, собственного веса прогона и снеговой нагрузки.
На рисунке показана грузовая площадь рассчитываемого прогона.
Для того, чтобы нагрузку на квадратный метр перевести в линейную, нам надо будет умножить ее на ширину грузовой площади.
— линейная нормативная нагрузка от профлиста = 5,4 кг/м2 * 1,003 м = 5,42 кг/м
Для получения расчетной нагрузки – умножим нормативную на коэффициент безопасности по нагрузке (для металлических конструкций он равен 1,05).
— линейная расчетная нагрузка от профлиста = 5,42 кг/м * 1,05 = 5,69 кг/м
Дальше таким же способом находим расчетную линейную нагрузку от снега (коэффициент надежности по снеговой нагрузке 1,4):
Итоговое значение линейной нагрузки будет следующее:
Затем рассчитываем прогон на прочность, подбирая то или иное сечение с небольшим запасом (в онлайн расчет уже входит нагрузка от собственного веса конструкции).
В итоге расчета на прочность у нас получился швеллер № 5П по ГОСТ 8240-89.
Теперь рассчитаем данный прогон на прогиб. Заглянув в СП 20.13330.2016 «Нагрузки и воздействия», видим, что максимальный прогиб для нашего 3-ех метрового прогона рассчитывается как l/150=3000/150=20 мм.
Значит делаем вывод — прогон из 5 швеллера устраивает нас как по прочности, так и по прогибу.
Балку будем рассчитывать ту, которая лежит на оси 2, потому что грузовая площадь, а, следовательно, и нагрузка у нее будет самая большая.
Опираться балка будет на накладку на конце стойки. Накладка приварена к стойке, а балка будет приварена к накладке. Значит опирание опять шарнирное и расчетная схема «шарнир-шарнир».
Нагрузки, которые будут действовать на балку:
— снеговая нагрузка = 50 кг/м2 * 3 м * 1.4 = 210 кг/м
— нагрузка от профлиста = 5,4 кг/м2 * 3 м * 1,05 = 17,01 кг/м
— нагрузка от веса прогонов (12 метров прогонов попадают в грузовую площадь, масса одного метра 8,59 кг) = 12 м * 8,59 кг/м * 1,05 = 108,23кг.
Запишем эту нагрузку как линейно распределенную на 3 метра: 108,23 кг / 3 м = 36,08 кг/м.
— нагрузка от собственного веса балки (учитывается в онлайн расчете)
Итоговая нагрузка на балку будет:
Далее опять по нашему онлайн расчету на прочность подбираем сечение:
По расчету видим, что данная балка по прочности проходит с хорошим запасом. Теперь рассчитаем ее на прогиб (максимально допустимый прогиб для балки равной 3м опять же выходит 3000/150=20 мм).
Исходя из двух расчетов видно, что балка 10Б1 проходит с хорошим запасом. В целом сечение можно уменьшить, но в качестве примера оставим эту балку
Получился двутавр №10Б1 по СТО АСЧМ 20-93.
Со всех стоек рассчитывать мы будем самую неблагоприятную (самая высокая и самая нагруженная). Это будет стойка 2-Б. Ее высота составит 2700 мм, а грузовая площадь будет 3 м * 1,5 м = 4,5 м2.
На данную грузовую площадь будут действовать сосредоточенные расчетные нагрузки от:
— профлиста = 5,4 кг/м2 * 4,5 м2 * 1,05 = 25,52 кг
— массы прогонов = 6 м * 8,59 кг/м * 1,05 = 54,12 кг (6 метров прогонов попадают в грузовую площадь)
— массы балки (ее можно рассчитать в Расчете массы металла, учитывая тот факт, что в грузовую площадь попадает 1,5 метра балки) = 11,92 кг * 1,05 = 12,52 кг
Итоговая нагрузка на стойку будет следующей:
Переведем в килоньютоны: 419,4 кг * 10 Н/кг /1000 = 4,194 кН.
Снизу стойка приварена к пластине, которая на 4 анкерах крепится к бетону, поэтому соединение будет шарнирное, и сверху, как мы уже выяснили, тоже шарнирное соединение с балкой. Значит, расчетная схема будет «шарнир-шарнир».
Далее на нашем Онлайн расчете стойки рассчитаем сечение стойки из профильной трубы, к примеру, 40х1.5:
Как видно на рисунке, принята профильная труба сечение 50х50 и толщиной стенки 2 мм.
Даже если наш каркас не будет обшиваться со всех сторон, а, следовательно, и не будет существенных ветровых нагрузок, то мы все равно должны позаботиться о пространственной жесткости навеса.
Для этого в обоих направлениях расставим связи из профильной трубы (такой же, как применялась для стоек). По осям А и Б будет крестовая связь, а по осям 1, 2 и 3 поставим горизонтальную связь, для нормального проезда автомобиля.
Если вам понравилась эта статья – пишите комментарии, делитесь ей с друзьями и мы обязательно напишем еще!
Источник статьи: http://prostobuild.ru/raschet/145-raschet-navesa.html
Расчёт и изготовление металлической фермы для навеса
Расчёт металлоконструкций стал камнем преткновения для многих строителей. На примере простейших ферм для уличного навеса мы расскажем, как правильно рассчитать нагрузки, а также поделимся простыми способами самостоятельной сборки без использования дорогостоящего оборудования.
Общая методология расчёта
Фермы применяют там, где использовать цельную несущую балку нецелесообразно. Эти конструкции отличаются меньшей пространственной плотностью, при этом сохраняют устойчивость воспринимать воздействия без деформаций благодаря правильному расположению деталей.
Конструкционно ферма состоит из внешнего пояса и заполняющих элементов. Суть работы такой решётки довольно проста: поскольку каждый горизонтальный (условно) элемент не может выдержать полную нагрузку ввиду недостаточно большого сечения, два элемента располагаются на оси главного воздействия (силы тяжести) таким образом, чтобы расстояние между ними обеспечивало достаточно большое сечение поперечного среза всей конструкции. Ещё проще можно объяснить так: с точки зрения восприятия нагрузок ферму рассматривают так, будто она выполнена из цельного материала, при этом заполнение обеспечивает достаточную прочность, исходя лишь из расчётного приложенного веса.
Конструкция фермы из профильной трубы: 1 — нижний пояс; 2 — раскосы; 3 — стойки; 4 — боковой пояс; 5 — верхний пояс
Такой подход крайне прост и зачастую его с лихвой хватает для сооружения простых металлоконструкций, однако материалоёмкость при грубом расчёте получается крайне высокой. Более подробное рассмотрение действующих воздействий помогает снизить расход металла в 2 и более раз, такой подход и будет наиболее полезным для нашей задачи — сконструировать лёгкую и достаточно жёсткую ферму, а потом собрать её.
Основные профили ферм для навеса: 1 — трапециевидный; 2 — с параллельными поясами; 3 — треугольный; 4 — арочный
Начать следует с определения общей конфигурации фермы. Обычно она имеет треугольный или трапециевидный профиль. Нижний элемент пояса располагают преимущественно горизонтально, верхний — под наклоном, обеспечивающим правильный уклон кровельной системы. Сечение и прочность элементов пояса при этом следует выбирать близкими к таким, чтобы конструкция могла поддерживать свой собственный вес при имеющейся системе опоры. Далее производится добавление вертикальных перемычек и косых связей в произвольном количестве. Конструкцию нужно отобразить на эскизе для визуализации механики взаимодействия, указав реальные размеры всех элементов. Далее в дело вступает её величество Физика.
Определение сочетанных воздействий и реакции опоры
Из раздела статики школьного курса механики мы возьмём два ключевых уравнения: равновесия сил и моментов. Их мы будем применять, чтобы вычислить реакцию опор, на которые положена балка. Для простоты вычислений опоры будем считать шарнирными, то есть не имеющими жёстких связей (заделки) в точке касания с балкой.
Пример металлической фермы: 1 — ферма; 2 — балки обрешётки; 3 — кровельное покрытие
На эскизе нужно предварительно отметить шаг обрешётки системы кровли, ведь именно в этих местах должны находиться точки сосредоточения приложенной нагрузки. Обычно именно в точках приложения нагрузки и размещаются узлы схождения раскосов, так проще выполнить расчёт нагрузки. Зная общий вес кровли и число ферм в навесе, нетрудно вычислить нагрузку на одну ферму, а фактор равномерности покрытия определит, равны ли будут приложенные силы в точках сосредоточения, или же они будут отличаться. Последнее, к слову, возможно, если в определённой части навеса один материал покрытия сменяется другим, имеется проходной трап или, например, зона с неравномерно распределённой снеговой нагрузкой. Также воздействие на разные точки фермы будет неравномерным, если её верхняя балка имеет скругление, в этом случае точки приложения силы нужно соединить отрезками и рассматривать дугу как ломанную линию.
Когда все действующие усилия проставлены на эскизе фермы, приступаем к вычислению реакции опоры. Относительно каждой из них ферму можно представить не иначе как рычаг с соответствующей суммой воздействий на него. Чтобы вычислить момент силы в точке опоры, нужно умножить нагрузку на каждую точку в килограммах на длину плеча приложения этой нагрузки в метрах. Первое уравнение гласит, что сумма воздействий в каждой точке и равняется реакции опоры:
- 200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6 = R2 · 6 — уравнение равновесия моментов относительно узла а, где 6 м — длина плеча)
- R2 = (200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6) / 6 = 400 кг
Второе уравнение определяет равновесность: сумма реакций двух опор будет в точности равна приложенному весу, то есть зная реакцию одной опоры, можно легко найти значение для другой:
- R1 + R2 = 100 + 200 + 200 + 200 + 100
- R1 = 800 – 400 = 400 кг
Но не ошибитесь: здесь также действует правило рычага, поэтому если ферма имеет существенный вынос за одну из опор, то и нагрузка в этом месте будет выше пропорционально разнице расстояний от центра масс до опор.
Дифференциальный расчёт усилий
Переходим от общего к частному: теперь необходимо установить количественное значение усилий, действующих на каждый элемент фермы. Для этого перечисляем каждый отрезок пояса и заполняющие вставки списком, затем каждый из них рассматриваем как сбалансированную плоскую систему.
Для удобства вычислений каждый соединительный узел фермы можно представить в виде векторной диаграммы, где векторы воздействий пролегают по продольным осям элементов. Всё, что нужно для вычислений — знать длину сходящихся в узле отрезков и углы между ними.
Начинать нужно с того узла, для которого в ходе вычисления реакции опоры было установлено максимально возможное число известных величин. Начнём с крайнего вертикального элемента: уравнение равновесия для него гласит, что сумма векторов сходящихся нагрузок равна нулю, соответственно, противодействие силе тяжести, действующей по вертикальной оси, эквивалентно реакции опоры, равной по величине, но противоположной по знаку. Отметим, что полученное значение — лишь часть общей реакции опоры, действующая для данного узла, остальная нагрузка придётся на горизонтальные части пояса.
Узел b
Далее перейдём к крайнему нижнему угловому узлу, в котором сходятся вертикальный и горизонтальный сегменты пояса, а также наклонный раскос. Сила, действующая на вертикальный отрезок, вычислена в предыдущем пункте — это давящий вес и реакция опоры. Сила, действующая на наклонный элемент, вычисляется по проекции оси этого элемента на вертикальную ось: из реакции опоры вычитаем действие силы тяжести, затем «чистый» результат делим на sin угла, под которым раскос наклонён к горизонтали. Нагрузка на горизонтальный элемент находится также путём проекции, но уже на горизонтальную ось. Только что полученную нагрузку на наклонный элемент мы умножаем на cos угла наклона раскоса и получаем значение воздействия на крайний горизонтальный сегмент пояса.
Узел a
- -100 + 400 – sin(33,69) · S3 = 0 — уравнение равновесия на ось у
- S3 = 300 / sin(33,69) = 540,83 кг — стержень 3 сжат
- -S3 · cos(33,69) + S4 = 0 — уравнение равновесия на ось х
- S4 = 540,83 · cos(33,69) = 450 кг — стержень 4 растянут
Таким образом, последовательно переходя от узла к узлу, необходимо вычислить действующие в каждом из них силы. Обратите внимание, что встречно направленные векторы воздействий сжимают стержень и наоборот — растягивают его, если направлены противоположно друг от друга.
Определение сечения элементов
Когда для фермы известны все действующие нагрузки, пора определяться с сечением элементов. Оно не обязательно должно быть равным для всех деталей: пояс традиционно выполняют из проката более крупного сечения, чем детали заполнения. Так обеспечивается запас надёжности конструкции.
где: Fтр — площадь поперечного сечения растянутой детали; N — усилие от расчётных нагрузок; Ry — расчётное сопротивление материала; γс — коэффициент условий работы.
Если с разрывающими нагрузками для стальных деталей всё относительно просто, то расчёт сжатых стержней производится не на прочность, а на устойчивость, так как итоговый результат количественно меньше и, соответственно, считается критическим значением. Рассчитать можно на онлайн-калькуляторе, а можно и вручную, предварительно определив коэффициент приведения длины, определяющий, на какой части общей протяжённости стержень способен изгибаться. Этот коэффициент зависит от метода крепления краёв стержня: для торцевой сварки это единица, а при наличии «идеально» жёстких косынок может приближаться к 0,5.
где: Fтр — площадь поперечного сечения сжатой детали; N — усилие от расчётных нагрузок; φ — коэффициент продольного изгиба сжатых элементов (определяется по таблице); Ry — расчётное сопротивление материала; γс — коэффициент условий работы.
Также нужно знать минимальный радиус инерции, определяемый как квадратный корень из частного от деления осевого момента инерции на площадь сечения. Осевой момент определяется формой и симметрией сечения, лучше взять это значение из таблицы.
где: ix — радиус инерции сечения; Jx — осевой момент инерции; Fтр — площадь сечения.
Таким образом, если разделить длину (с учётом коэффициента приведения) на минимальный радиус инерции, можно получить количественное значение гибкости. Для устойчивого стержня соблюдается условие, что частное от деления нагрузки на площадь поперечного сечения не должно быть меньше произведения допустимой сжимающей нагрузки на коэффициент продольного изгиба, который определяется значением гибкости конкретного стержня и материалом его изготовления.
где: lx — расчётная длина в плоскости фермы; ix — минимальный радиус инерции сечения по оси x; ly — расчётная длина из плоскости фермы; iy — минимальный радиус инерции сечения по оси y.
Обратите внимание, что именно в расчёте сжатого стержня на устойчивость отображена вся суть работы фермы. При недостаточном сечении элемента, не позволяющем обеспечить его устойчивость, мы вправе добавить более тонкие связи, изменив систему крепления. Это усложняет конфигурацию фермы, но позволяет добиться большей устойчивости при меньшем весе.
Изготовление деталей для фермы
Точность сборки фермы крайне важна, ведь все расчёты мы проводили методом векторных диаграмм, а вектор, как известно, может быть только абсолютно прямым. Поэтому малейшие напряжения, возникающие вследствие искривлений из-за неправильной подгонки элементов, сделают ферму крайне неустойчивой.
Сначала нужно определиться с размерами деталей внешнего пояса. Если с нижней балкой всё достаточно просто, то для нахождения длины верхней можно воспользоваться либо теоремой Пифагора, либо тригонометрическим соотношением сторон и углов. Последнее предпочтительно при работе с такими материалами, как угловая сталь и профильная труба. Если угол ската фермы известен, его можно вносить как поправку при подрезке краёв деталей. Прямые углы пояса соединяются подрезкой под 45°, наклонные — путём добавления к 45° угла наклона с одной стороны стыка и вычитанием его же с другой.
Детали заполнения вырезают по аналогии с элементами пояса. Основная загвоздка в том, что ферма — изделие строго унифицированное, а потому для её изготовления потребуется точная деталировка. Как и при расчёте воздействий, каждый элемент нужно рассматривать индивидуально, определяя углы схождения и, соответственно, углы подреза краёв.
Довольно часто фермы изготавливают радиусными. Такие конструкции имеют более сложную методику расчёта, но большую конструкционную прочность, обусловленную более равномерным восприятием нагрузок. Изготавливать скругленными элементы заполнения смысла нет, а вот для деталей пояса это вполне применимо. Обычно арочные фермы состоят из нескольких сегментов, которые соединяются в местах схождения заполняющих раскосов, что нужно учитывать при проектировании.
Сборка на метизах или сваривание?
В заключение было бы неплохо обозначить практическую разницу между способами сборки фермы свариванием и с помощью разъёмных соединений. Начать следует с того, что сверление в теле элемента отверстий под болты или заклёпки практически не влияет на его гибкость, а потому на практике не учитывается.
Когда речь зашла о способе скрепления элементов фермы, мы установили, что при наличии косынок длина участка стержня, способного изгибаться, существенно сокращается, за счёт чего можно уменьшить его сечение. В этом преимущество сборки фермы на косынках, которые крепятся сбоку к элементам фермы. В таком случае особой разницы в методе сборки нет: длины сварочных швов будет с гарантией достаточно, чтобы выдержать сосредоточенные напряжения в узлах.
Если же сборка фермы производится стыкованием элементов без косынок, здесь нужны особые навыки. Прочность всей фермы определяется наименее прочным её узлом, а потому брак в сваривании хотя бы одного из элементов может привести к разрушению всей конструкции. При недостаточном навыке ведения сварочных работ рекомендуется провести сборку на болтах или заклёпках с использованием хомутов, угловых кронштейнов или накладных пластин. При этом крепление каждого элемента к узлу должно осуществляться не менее чем в двух точках.
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
Источник статьи: http://rmnt.mirtesen.ru/blog/43428744039/Raschyot-i-izgotovlenie-metallicheskoy-fermyi-dlya-navesa