- Почему циркуляция воздуха важна для климатического контроля в теплице
- Управление климатическими условиями
- Микроклиматы подрывают климат-контроль
- Пограничные слои подавляют метаболизм растений
- Диспергирование пограничных слоев с помощью движения воздуха
- «Циркуляция» и «Поток» не одно и то же
- Равномерность климата – высшая цель
- Поддержание микроклимата в теплице. Типы современных теплиц
- Положение теплицы на плоскости
- Система управления микроклиматом в теплице
- Климатический компьютер
- Дефицит влажности
- Контроль температуры в теплице
- Типы современных теплиц
- Полностью закрытая теплица с технологией поддержания параметров микроклимата
- Основную нагрузку по обогреву теплицы по-прежнему должны нести все остальные контуры водотрубной системы обогрева.
- Таким образом, естественная вертикальная конвекция воздуха в теплице дополняется вынужденной горизонтальной конвекцией, что обеспечивает абсолютно равномерное распределение воздушных потоков и, соответственно, идеальную выровненность микроклимата. Такое, в общем-то простое, решение позволяет разделить разнотемпературные воздушные потоки в теплице (причем разделить за счет естественной конвекции, без дополнительных затрат энергии!), предоставляя возможность управления ими: как с точки зрения поддержания в них необходимого уровня температуры, влажности и содержания СО2, так и с точки зрения кратности воздухообмена в теплице.
- Все оборудование работает в автоматическом режиме (разработано специальное программное обеспечение) и управляется отечественной автоматикой по данным датчиков метеопараметров снаружи теплицы и по датчикам температуры и влажности воздуха, содержания СО2 в воздухе внутри теплицы
Почему циркуляция воздуха важна для климатического контроля в теплице
Контроль климата является ключом к обеспечению того, чтобы каждое растение росло в одинаковых оптимальных условиях.
Тепличное хозяйство – это контроль климатических условий с целью оптимизации производства растений. Температура постоянно регулируется, воздух осушается, а освещение точное. Но что гарантирует, что эти превосходные условия достигают каждого растения равномерно?
Ответ – циркуляция воздуха.
Управление климатическими условиями
Теплицы являются динамичной средой. Они подвержены влиянию погоды на открытом воздухе, сохраняя другие условия внутри. Это требует постоянного внимания и баланса. Чтобы еще больше усложнить ситуацию, растения, которые заполняют теплицу, постоянно дышат и очищаются, изменяя окружающую их среду и часто подрывая наши усилия по обеспечению их наилучшими климатическими условиями.
Климат в теплице постоянно меняется. Он колеблется во времени, а также между различными зонами, высотами, близостью от внешних стен и т. д. В общей теплице очень вероятно, что не все растения ощущают усилия по контролю окружающей среды, которые мы прилагаем. Еще более вероятно, что они не все испытывают одни и те же условия. Этого почти невозможно избежать даже при использовании небольших осушителей и вентиляторов для борьбы с конкретными локальными проблемами.
Микроклиматы подрывают климат-контроль
Микроклимат – это, по сути, небольшие карманы воздуха, в которых создаются условия, отличные от остального пространства. Мониторинг в таком небольшом разрезе не всегда практичен или вовсе невозможен в коммерческой теплице, поэтому его может быть трудно отследить. Если есть определенные зоны, которые более восприимчивы к плесени или другим болезням влажности, вы должны подозревать, что виноваты микроклиматы.
Говоря о парниковых микроклиматах (или любых других закрытых или полузакрытых сооружениях для выращивания, если на то пошло), главным виновником является пограничный слой, созданный самими растениями.
Пограничный слой представляет собой тонкий слой воздуха, окружающий растение. Это вызвано испарением листьев, создавая прохладную и влажную среду. Оставляя этот слой нетронутым, это приводит к тому, что растение испытывает совершенно другую среду, нежели предполагалось. В густой листве или в густо расположенных растениях эти слои перекрываются, создавая чрезвычайно влажную среду. Это может даже привести к образованию конденсата на самих растениях, что является основной ошибкой, которая может быстро привести к появлению плесени и вспышкам болезней.
Пограничные слои подавляют метаболизм растений
Это не просто плесень и болезни. Пограничные слои являются серьезной помехой для метаболизма растений.
Растения пропускают воду через поры устьиц, расположенных на листьях. Когда вода испаряется из этих пор, это создает «тягу», которая заставляет воду всасываться через корни. Эта вода содержит питательные вещества, необходимые для роста и развития. Но когда воздух, окружающий растение, слишком влажный, вода не может испаряться, что приводит к уменьшению поглощения питательных веществ (это часто называют низким VPD). Поэтому очень важно поддерживать правильный диапазон относительной влажности вокруг растения. Или, другими словами, разогнать пограничный слой.
Диспергирование пограничных слоев с помощью движения воздуха
Рассеивание пограничных слоев может показаться легкой задачей. Небольшой ветерок должен сделать свое дело. Но большинство схем воздушного потока приводят к тем же проблемам, что и представленные выше. Наши усилия могут достичь некоторых растений и оставить остальные без изменений. Некоторые растения могут испытывать сильный порыв ветра, в то время как другие получают слабое дуновение из-за их близости от вентиляторов или из-за блокировки другими растениями воздуха на этом пути. Это может легко привести к ситуации, в которой плесень сохраняется, растения не справляются, а рост остается неравномерным, несмотря на все усилия и вложенный капитал.
Решение этой проблемы заключается в правильной циркуляции воздуха. Создание циклического движения из центра наружу и назад обеспечивает четкое равномерное распределение воздуха, охватывая все растения независимо от их расположения в теплице.
«Циркуляция» и «Поток» не одно и то же
«Воздушный поток» – это термин, обычно используемый в сельском хозяйстве для описания любого движения воздуха. Большинство теплиц используют вентиляторы для создания движения в линейных направлениях. Вертикально или горизонтально, это выталкивает воздух в одном прямом направлении. Комбинирование различных направлений является обычным явлением, но чаще всего приводит к хаотичному характеру движения воздуха, который не может быть точно предсказан и равномерно распределен.
Эффективная циркуляция достигается за счет выпуска воздуха на уровне купола из центра пространства во все направления сразу (360 °), при этом всасывая воздух со всех сторон на уровне земли.
Сопоставление пропускной способности воздуха с размером пространства является ключевым фактором. Слишком большая область не позволит воздуху эффективно достичь периметра. Вертикальное пространство также важно учитывать. Например, сведение его к минимуму с использованием экранов позволит воздуху более эффективно перемещаться по верху и достигать всех углов теплицы.
Также важно разделить циркуляцию воздуха и поток воздуха от вентиляции. Вентиляция приносит воздух с улицы, который не был обработан для оптимальных условий теплицы, в то время как циркуляция зависит от движения внутреннего воздуха. Это требует гораздо меньше энергии, так как воздух уже акклиматизирован, его нет необходимость нагревать, охлаждать или осушать. Циркуляция также может быть выполнена в любое время, в отличие от вентиляции, которая может быть неэффективной в зависимости от погоды на улице.
Равномерность климата – высшая цель
Понимание и применение циркуляции воздуха является частью создания и поддержания оптимальных климатических условий в теплице. Фактически, это звено, связующее воедино характеристики, такие как нагревание и осушение, для создания однородного климата.
Климатическая однородность имеет несколько преимуществ. Она позволяет растительному метаболизму функционировать на должном уровне, что приводит к получению продукта высокого качества, а также к наиболее равномерному выходу при почти полном сокращении вспышек заболеваний.
Часто производители вынуждены чрезмерно инвестировать в такие усилия, как отопление, из-за нескольких проблемных зон, в то время как остальная часть пространства достаточно акклиматизирована. Это приводит к неэффективному использованию энергии и ненужным расходам. Например, чрезмерно работающие осушители из-за гниения растений, появляющейся в определенных местах, в то время как большая часть теплицы поддерживается на безопасном и комфортном уровне влажности.
Циркуляция воздуха сводит на нет микроклимат и проблемные области, позволяя производителям сократить энергозатраты, одновременно снижая потери урожая, повышая качество продукции и улучшая контроль над всем процессом производства.
Источник статьи: http://www.easygrow.ru/articles/why_is_air_circulation_important_for_climate_control_in_the_greenhouse/
Поддержание микроклимата в теплице. Типы современных теплиц
Александр Юрьевич Шагаев работал главным агрономом на тепличном комбинате «ЗАО «Сейм Агро» с начала его строительства. Он занимался подбором персонала, оборудования и постановкой технологии производства. Александр Юрьевич делится информацией о том, каким образом происходит поддержание микроклимата в теплице, какие устройства и системы осуществляют регуляцию основных климатических показателей в закрытом грунте.
Положение теплицы на плоскости
Первое, на что необходимо обратить внимание при строительстве теплицы – это ее положение на плоскости. Если вы находитесь внутри теплицы утром, когда солнце только всходит, вы должны видеть его в конце ряда. Если зайти вряд, солнце должно сходить в его конце, а в полдень в рядах должна быть тень. Если у вас теплица развернута на 90 градусов и солнце пробивает ваш массив до самой земли – это первая причина, по которой ваши растения погибнут в результате перегрева корневого мата. Перегрев мата приводит к возникновению фузариоза, питиума и других корневых заболеваний. Не правильно построенная на плоскости теплица приводит к тому, что комбинат никогда не будет правильно работать, но исправить это в дальнейшем не возможно, поэтому этот фактор очень важный.
Система управления микроклиматом в теплице
Система управления микроклиматом состоит из: форточек, системы вентиляции, экранов, досветки, СИОД (система испарительного охлаждения и доувлажнения), система отопления, система подачи СО2. Экраны бывают двух видов: энергетические и затеняющие. Вентиляторы для создания равномерного температурного поля в теплице. Досветка может быть, а может и не быть. СИОД способствует поддержанию оптимальной влажности растений и применяется при дефиците влажности в теплице. Также в теплице должны быть датчики контроля температуры, влажности, ЕС, рН – это 4 параметра, которые всегда должны контролироваться. В России применяют 4 системы контурного отопления («под желоб», «шатер», труба роста, труба рельс), в Голландии используют 2 системы, поскольку у них другой климат, в Африке вообще только 1 система отопления – труба рельсы. Каждая из систем имеет свое влияние на растение, на микроклимат и все остальные процессы, которые происходят в теплице.
Подача тумана высокого давления
Климатический компьютер
В руках агронома имеется климатический компьютер для регулирования влажности, температуры и дефицита влажности. Однако выставить все параметры этого компьютера не так просто. К сожалению, голландцы выставляют нам только средние значения. А чтобы разобраться самому в климатическом компьютере, нужно быть фанатом этого дела. Как правило, сейчас этого добиваются на климатических компьютерах «Привы» («Priva»). На компьютеры, которые очень сильно распространены, есть хоть какие-то рекомендации, чтобы сделать настройки и самому не думать. А на более сложные голландские компьютеры еще и рекомендаций нет, потому что, чтобы их написать, нужно годы потратить. Параметры микроклимата, которые можно контролировать это: температура воздуха в теплице, температура растений, влажность.
Дефицит влажности
Главный фактор, к которому мы стремимся — это дефицит влажности. Первое что необходимо повесить над рабочим столом оператора, который следит за системой управления – это таблица дефицита влажности. Чтобы правильно соблюдать количество влажности в теплице у каждого агронома есть таблица по влажности матов в виде графика. Если вы правильно работаете с таблицей дефицита влажности, то достаточно только ее одной, чтобы управлять растениями. Если вы не умеете управлять растениями, вам не поможет ни правильная температура, ни правильные поливы, ни правильная агрохимия. Вы должны правильно понимать, что происходит в теплице. Дефицит влажности, так же как голод у человека. Растение всегда стремится «поесть», получить дополнительные ассимиляты, переместить их в необходимые им зоны: корневую, зону плодоношение или точку роста. Как только дефицит влажности у нас в теплице заканчивается, растение останавливается, поток питательных веществ по сосудам прекращается и вот здесь у растения наступает критический период, когда на него нападают все болезни, какие только возможно (грибковые, вирусные и бактериозы). Здоровое растение с дефицитом влажности 24 часа в сутки, в основном не поражается болезнями и не имеет конденсата на листьях.
Контроль температуры в теплице
Существуют также установки по контролю температуры, которые высчитывают ее среднесуточный показатель. Самым важным, кроме дефицита влажности, является контроль среднесуточных температур в теплице. В летнее время могут быть перегревы. Чтобы вести культуру в более жарких условия, нужно стремиться снизить среднесуточную температуру, основываясь на данных от датчиков температуры.
Типы современных теплиц
Строительство теплицы должно, в первую очередь, оценивать все воздействия среды, которые осуществляются на данный объект. На микроклимат в теплице имеют влияние такие внешние факторы как: температура окружающей среды, влажность, количество и продолжительность солнечного освещения и скорость ветра. Это те факторы, которые учитываются при программировании управления теплицей. Современные теплицы можно считать закрытыми объектами или полузакрытыми. Как правило, это теплицы 4-го поколения, есть в России уже теплицы и 5-го поколения. Четвертого поколения – это полуоткрытая модель, которая включает систему открытия форточек, систему подогрева, увлажнения – это, как правило, система испарительного охлаждения и доувлажнения (СИОД), которая может присутствовать или отсутствовать. СИОД бывает высокого давления и среднего давления. Среднего давления — это лишняя трата времени и денег, но это система, которая может привести в негодность теплицу за одни сутки, при не правильном ее использовании. Например, если не правильно вносить воду в теплицу, не делать отвод воды с теплицы, соответственно, вы теряете дыхание, фотосинтез, вы теряете урожай.
ТК «Липецк Агро»
Теплицы пятого поколения – это Ультра Клима. Примером такой теплицы является ТК «ЛипецкАгро» – очень красивый комбинат и они продолжают строиться. Такие же теплицы строятся в Ельце, в поселке Садовом в Екатеринбурге. Это полностью закрытая теплица: нет форточек или очень мало форточек, есть нагнетание прохладного воздуха, плюс освещение. Пятое поколение – это самые современные теплицы в России, которые существуют и теперь их будет три.
Из семинара Шагаева Александра Юрьевича – агронома-консультанта с 15-летним опытом работы на тепличных комбинатах.
Другие статьи на основе семинара Шагаева Александра Юрьевича:
Источник статьи: http://ecoculture.biz/podderzhanie-mikroklimata.-tipy-sovremennyh-teplic.html
Полностью закрытая теплица с технологией поддержания параметров микроклимата
На сегодняшний день наиболее современными теплицами считаются «полузакрытые» теплицы так называемого пятого поколения с технологиями типа Ultra Clima (от компании KUBO) или Suprim Air (от компании CERTHON). Применение таких технологий позволяет получить следующие преимущества по сравнению с обычными блочными теплицами:
обеспечивают искусственную циркуляцию воздуха в теплице, что создает активный микроклимат, благоприятный для растений, и позволяет повторно использовать тепловую энергию, которая из-под кровли возвращается к основанию теплицы (в том числе и тепло, которое образуется при работе системы искусственного освещения);
дают возможность догревать забираемый из-под кровли воздух с помощью калориферов, или охлаждать его путем подмешивания наружного воздуха, охлаждаемого с помощью так называемых «влажных матрасов» или адиабатических панелей, на которые подается вода. При прохождении через эти панели (или «матрасы») воздух понижает свою температуру за счет испарительного охлаждения;
они позволяет экономить и поддерживать оптимальный уровень СО2 в воздухе теплицы;
за счет малого количества форточек в теплице экономится тепловая энергия и уменьшается коэффициент затенения;
за счет создания избыточного внутреннего давления такие системы позволяют защитить теплицу от проникновения вредителей и инфекционных начал.
И тем не менее, эти технологии не решают всех проблем. Они не позволяют достаточно эффективно бороться с излишней влажностью воздуха в теплице. Именно поэтому в ней оставлены форточки. Пусть и меньшее количество, но оставлено. Такая теплица называется «полузакрытой», поскольку она не может быть полностью закрытой.
Разумеется, искусственная циркуляция воздуха в теплице имеет положительное значение, но на ее создание нужно затрачивать энергию. Вентиляторы (и всасывающие воздух из-под конька теплицы, и загоняющие воздух в теплицу через рукава под лотками с растениями) должны непрерывно работать. Воздух, подаваемый в теплицу через рукава под лотками с растениями, не может нагреваться выше 40-45°С. Соответственно, эти рукава, видимо, могут заменять ростовую трубу (трубу зонального обогрева), но не могут служить основным элементом системы обогрева.
Основную нагрузку по обогреву теплицы по-прежнему должны нести все остальные контуры водотрубной системы обогрева.
Наконец, система испарительного охлаждения воздуха может работать эффективно только в сухом климате, с низкой относительной влажностью воздуха. Именно поэтому создатели подобных технологий и таких теплиц никогда не рекомендовали применять их в умеренном климате. Наилучшие результаты полузакрытая теплица показывает в пустынных, полузасушливых и частично умеренных климатических зонах с очень сухим летом. На территории России таких зон практически нет. Ни Крым, ни Северный Кавказ в эти зоны не попадают. Попадают только низовья Волги (рис. 1).
Какой же должна быть теплица следующего поколения, в которой вышеназванные проблемы решались бы с большей эффективностью, чем в «полузакрытой» теплице так называемого пятого поколения?
Наиболее перспективными в плане внедрения новых технологий управления микроклиматом представляются теплицы ангарного типа, поскольку в них (в отличие от блочных теплиц типа «Венло») не нарушается естественная конвекция воздушных потоков.
В блочной теплице, у которой пролет перекрыт кровлей с несколькими коньками (тип «Венло»), воздух, охлажденный на кровле, опускается вниз и смешивается уже на уровне «голов» растений с теплым воздухом, поднимающимся вверх. Именно поэтому в полузакрытой теплице циркуляция воздуха создается искусственно, путем его забора из-под кровли и подачи в производственную зону снизу через специальные рукава с помощью нагнетательных вентиляторов (рис. 2).
В ангарной же теплице нагреваемый в теплице воздух поднимается вверх, охлаждается, соприкасаясь с наружным ограждением теплицы, и опускается вдоль стенок теплицы до самого низа, где уже смешивается с теплым воздухом, разбавляя его.
Потом снова нагревается, поднимается, охлаждается, опускается и т.д. То есть здесь естественная конвекция работает нормальным образом (рис. 3).
Однако при естественной конвекции температурное поле в теплице не выровнено (рис. 4). Понятно, что растения, находящиеся в центре шатра, и растения, расположенные в боковых рядах, будут находиться в разных температурных условиях.
Если же влажность воздуха в теплице превысит допустимые значения, то для избавления от слишком влажного воздуха придется открывать форточки. Ни один из существующих типов теплиц (включая полузакрытые теплицы) не имеет другой возможности для решения этой проблемы. Но, одновременно с выпуском теплого и влажного воздуха через форточки на улицу, точно такой же объем более холодного воздуха попадает внутрь теплицы (рис. 5).
Причем попадает он прямо на верхушки растений. Далее этот прохладный воздух необходимо нагреть (т.е. затратить дополнительную энергию, которую можно было бы не тратить, если бы у нас была возможность удалить излишнюю влагу из воздуха внутри теплицы, не открывая форточки). При нагревании воздух будет расширяться (увеличиваться в объеме) и стремиться через все неплотности в покрытии теплицы (прежде всего в районе форточек) выйти наружу, что опять же грозит потерями тепла.
Для решения этих проблем необходимо вдоль обеих стен теплицы установить шторы, отделив ими боковые зоны («карманы»). В результате естественная конвекция воздушных потоков в теплице изменится. Холодный воздух, стекая в боковые «карманы», уже не будет смешиваться с теплым воздухом в центре теплицы, и температурное поле в зоне роста растений станет более выровненным.
По крайней мере, до тех пор пока холодный воздух не заполнит полностью боковые «карманы» и не начнет переливаться в производственную зону теплицы.
Чтобы этого не случилось, холодный воздух из боковых «карманов» удаляется минимум с той же скоростью, с какой он туда поступает. Из боковых «карманов» воздух попадает в специальную камеру («камера смешения воздуха»). Эта камера смешения используется для того, чтобы доработать воздух до нужных параметров не только по температуре, но и по влажности, и по содержанию в нем СО2.
Т.е. из этой камеры воздух в теплицу поступает уже с нужными характеристиками. Чтобы поступающий в теплицу воздух равномерно распределялся по теплице, камеры смешения воздуха необходимо размещать с противоположных торцов теплицы по диагонали, снабдив их дополнительными клапанами для подсоса воздуха из внутреннего объема теплицы, а посередине теплицы установить еще одну штору. При этом воздушный поток в производственную зону теплицы подается напрямую в подлотковое пространство с помощью высоконапорных центробежных вентиляторов (рис.6).
Таким образом, естественная вертикальная конвекция воздуха в теплице дополняется вынужденной горизонтальной конвекцией, что обеспечивает абсолютно равномерное распределение воздушных потоков и, соответственно, идеальную выровненность микроклимата. Такое, в общем-то простое, решение позволяет разделить разнотемпературные воздушные потоки в теплице (причем разделить за счет естественной конвекции, без дополнительных затрат энергии!), предоставляя возможность управления ими: как с точки зрения поддержания в них необходимого уровня температуры, влажности и содержания СО2, так и с точки зрения кратности воздухообмена в теплице.
Кроме функции разделения разнотемпературных воздушных потоков, боковые «карманы» выполняют еще несколько важных функций. Во-первых, за счет наличия боковых «карманов» уменьшается температурный градиент между наружным и внутренним воздухом теплицы. А это приводит к снижению теплопотерь!
Во-вторых, наличие относительно холодного воздуха в боковых карманах позволяет очень эффективно избавляться от излишней влаги в воздухе. При охлаждении воздуха его относительная влажность увеличивается и может достигать «точки росы». В этом случае излишняя влага из воздуха выпадает в виде конденсата. В полностью закрытой теплице это происходит в боковых «карманах». Вся боковая поверхность теплицы на высоту бокового «кармана» – это поверхность конденсации! И размер этой поверхности у полностью закрытой теплицы ангарного типа в разы больше, чем у полузакрытой теплицы блочного типа (по отношению к общей площади теплицы)! За счет конденсации влаги на этой поверхности ее излишки удаляются из воздуха и отводятся тут же, в боковых «карманах», через дренажные коллекторы.
Таким образом, отпадает необходимость в использовании форточной вентиляции. Она полностью заменяется на приточно-вытяжную.
При таком способе вентиляции наружный воздух попадает внутрь теплицы только через камеры смешения воздуха, в которые поступает через специальные клапаны с фильтрами. Принимая во внимание отсутствие форточек и избыточное внутреннее давление, создаваемое высоконапорными центробежными вентиляторами, это практически полностью исключает возможность проникновения вредителей и инфекционных начал снаружи внутрь теплицы. Осуществляя забор наружного воздуха через камеры смешения воздуха, можно комбинировать соотношение объемов холодного воздуха из боковых «карманов», теплого воздуха из производственной зоны и наружного воздуха.
Особо важную роль приточно-вытяжная вентиляция играет в летнее время. В жаркое время года температура воздуха внутри теплицы за счет парникового эффекта обычно превышает температуру наружного воздуха. Справиться с этой проблемой за счет естественного проветривания через форточную вентиляцию практически невозможно. С помощью системы испарительного охлаждения в обычной теплице мы можем понизить температуру воздуха на 3-4°С, в теплице с технологией типа Ultra Clima или SuprimAir – максимум на 5-7°С (имеется в виду в нашей зоне, где влажность наружного воздуха в самый жаркий месяц не опускается ниже 60-50%).
В теплице с приточно-вытяжной вентиляцией появляется возможность, во-первых, просто вытеснить внутренний воздух наружным и, таким образом, выровнять температуру снаружи и внутри теплицы.
При этом нужно понимать, что быстрее всего нагревается воздух именно в боковых «карманах». Поэтому, выдувая перегретый воздух из боковых «карманов», и подавая наружный воздух в производственную зону теплицы, мы имеем возможность вентилировать теплицу очень эффективно (рис. 7).
Кроме того, если использовать калориферы, установленные в камерах смешения воздуха, для охлаждения наружного воздуха, то внутри теплицы температура будет оптимальной даже в самые жаркие летние дни. Для этого на теплообменники калориферов подается холодная вода. Самое простое решение – использовать воду из скважин. Средняя температура воды, поднимаемой из скважин, в большинстве случаев не превышает +10°С. Этого вполне достаточно для того, чтобы эффективно понижать температуру наружного воздуха и на 10, а если надо, то и на большее количество градусов.
Полностью закрытая теплица с технологией управления разделенными воздушными потоками (технология CODA – от англ. Cоntrol Of Devided Airflows) запатентована (патент РФ № 2549087). Закончена разработка проектной документации на конструкцию теплицы под технологию управления разделенными воздушными потоками.
По нашим расчетам одним из наиболее оптимальных вариантов является теплица ангарного типа с шириной пролета 14 м. При такой ширине в теплице помещается 7 полноценных рядов подвесных лотков (центральный ряд – двойной) с проходами вокруг них, что позволяет (с учетом высоты шпалеры в 4 м) использовать любые современные технологии выращивания, включая технологию с приспусканием растений (рис. 8).
Кровля теплицы покрывается двойной пленкой с поддувом между слоями пленки. Боковые стенки – одинарный слой пленки или однослойный профилированный пластик. По коньку – вытяжные вентиляторы. У торцов теплицы по диагонали – камеры смешения воздуха с заборными клапанами для забора воздуха из бокового кармана, из производственной зоны теплицы, снаружи теплицы.
Основной контур обогрева – регистры надпочвенного обогрева. Дополнительный обогрев – с помощью калориферов, размещенных в камерах смешения воздуха.
Горячая вода для регистров надпочвенного обогрева и для калориферов нагрева воздуха в камерах смешения нагревается с помощью котлов пульсирующего горения (из расчета мощности в 200 кВт по теплу на площадь 1000 м 2 ).
Все оборудование работает в автоматическом режиме (разработано специальное программное обеспечение) и управляется отечественной автоматикой по данным датчиков метеопараметров снаружи теплицы и по датчикам температуры и влажности воздуха, содержания СО2 в воздухе внутри теплицы
Предварительные расчеты показывают, что стоимость такой конструкции вместе со стоимостью необходимого оборудования (включая котлы!) в два раза ниже стоимости аналогичной по площади стеклянной блочной теплицы (без стоимости котельной!).
Суммируя вышесказанное, все отличия «полностью закрытой» теплицы с технологией управления разделенными воздушными потоками от «полузакрытой» теплицы с технологией типа Ultra Clima или SuprimAir можно сформулировать следующим образом.
В полностью закрытой теплице:
в камеры смешения забирается охлажденный воздух из нижней части боковых карманов, куда он попадает за счет естественной конвекции (в «полузакрытой» теплице в торцевые коридоры забирается теплый воздух из-под кровли теплицы и загоняется в теплицу через двойные рукава для создания искусственной циркуляции воздуха, т.е. с дополнительными затратами энергии);
циркуляция воздуха создается за счет прямой подачи воздушного потока (без рукавов!) в междурядья (или подлотковое пространство) из камер смешения воздуха, расположенных по диагонали у торцов теплицы, дополняя естественную вертикальную конвекцию вынужденной горизонтальной, разнонаправленной конвекцией вокруг средней шторы теплицы;
в летнее время боковые карманы служат для отвода перегретого воздуха к кровле теплицы для последующего удаления через вытяжную вентиляцию (у «полузакрытой» теплицы такого механизма нет);
в зимнее время боковые карманы 1) не дают охлажденному воздуху напрямую смешиваться с теплым, т.е. защищают растения от стресса; 2) служат для удаления излишней влаги из воздуха путем ее конденсации внутри карманов; 3) создают меньший градиент перепада между внутренней и наружной температурой воздуха, т.е. уменьшают теплопотери;
форточная вентиляция заменена на приточно-вытяжную, что приводит к резкому снижению теплопотерь, защите внутреннего объема теплицы от проникновения в него вредителей и инфекционных начал извне;
наличие камер смешения воздуха позволяет управлять воздушными потоками в теплице, изменяя кратность воздухообмена и климатические параметры воздуха (температура, влажность, содержание СО2), в том числе за счет смешения в необходимых соотношениях воздушных потоков, забираемых из боковых карманов теплицы, из ее производственной зоны, и снаружи теплицы;
отсутствует необходимость в наличии целого ряда инженерных систем: 1) система зашторивания (во-первых, оно просто мешает естественной конвекции воздуха; во-вторых, при отсутствии форточной вентиляции, высокой кратности воздухообмена, при меньшем температурном градиенте за счет боковых карманов потери тепла и так будут минимальными; в-третьих, та же высокая кратность воздухообмена и поддержание оптимальной температуры воздуха решают проблему перегревов и ожогов, т.е. убирают необходимость притенения растений. В результате мы можем более полно использовать приходящую солнечную радиацию); 2) система форточной вентиляции; 3) система распределительных воздуховодов под подвесными лотками; 4) система испарительного охлаждения и увлажнения воздуха; 5) система подачи СО2;
использование комбинированной трубо-воздушной системы отопления, в которой базовую роль выполняют маломощные котлы пульсирующего горения российского производства с КПД до 95%, позволяет обходиться без дорогостоящих котельных, тепломагистралей и баков-аккумуляторов, что, в свою очередь, приводит не только к отсутствию теплопотерь, но и существенному снижению стоимости капитальных затрат и монтажных работ;
боковые шторы, отделяющие боковые карманы, могут использоваться для улучшения освещенности в теплице в утренние и вечерние часы (при правильной ориентации теплицы по сторонам света);
низкая удельная металлоемкость (из-за наличия центральных стоек) конструкции при очень высоких возможных нагрузках.
Все вышеперечисленные преимущества полностью закрытой теплицы с технологией управления разделенными воздушными потоками обеспечивают:
Стоимость строительства – в два раза ниже, чем у стеклянной теплицы блочного типа. Энергоэффективность – минимум на 30-40% выше, чем у стеклянной блочной теплицы.
За счет возможности поддержания идеальных параметров активного микроклимата – потенциал урожайности выше, чем в стеклянной блочной теплице минимум на 15-20%.
Снижение себестоимости производимой продукции минимум на 30%, что приводит к увеличению валовой прибыли в 2,5 раза, и рентабельности – в 3,5 раза.
Шишкин П.В., генеральный директор ООО НПО «КОМПАС»
Олейников В.Н., генеральный директор ООО «Олия»
Источник статьи: http://gavrishprof.ru/info/publications/polnostyu-zakrytaya-teplica-s-tehnologiey-podderzhaniya-parametrov-mikroklimata